使用Linux实现二值信号灯控制方案 (二值信号灯 linux)

树叶云

介绍

在现代城市的道路交通系统中,信号灯是不可缺少的一部分。信号灯的作用是控制交通流量和行车安全,使道路的通行更加有序和高效。随着计算机技术的不断发展,利用计算机控制信号灯已经成为现代交通系统的一个趋势。

Linux是一种开源的操作系统,具备高度模块化、灵活性强、易于拓展的优点。今天我们将介绍如何使用Linux实现二值信号灯的控制方案。

方案设计

信号灯的控制需要实现通断控制、时序控制、状态监测等功能。我们需要选择适合此项目的Linux系统,并且选择合适的嵌入式设备,同时我们还需要编写驱动程序,与Linux系统进行通信,完成信号灯的控制。具体方案设计如下:

1. 选择适合此项目的Linux系统

我们可以选择使用嵌入式Linux系统,如Buildroot、OpenEmbedded和Yocto等,也可以选择使用桌面Linux系统,在其上安装交叉编译器,将应用程序移植到嵌入式Linux系统中。考虑到物联网的发展趋势,我们在本项目中选择使用Yocto系统作为开发环境。

2. 选择合适的嵌入式设备

信号灯控制需要稳定可靠的嵌入式设备,我们要根据实际需求选择相应的硬件平台。在本项目中,我们选择采用树莓派(Raspberry Pi)嵌入式平台,它是一种低成本、高性能的开发板,可运行多种Linux操作系统。

3. 编写驱动程序

驱动程序是连接硬件和软件的桥梁,它能够将嵌入式设备的底层操作接露给Linux操作系统,使得应用程序可以方便地调用设备的功能。在本项目中,我们需要编写GPIO驱动程序,GPIO是通用输入输出接口,它可以将树莓派的引脚配置为输入或输出。通过编写GPIO驱动程序,我们可以控制树莓派上的GPIO引脚,从而控制信号灯的工作状态。

如何实现Linux的二值信号灯控制?

步骤1:安装Linux操作系统

我们可以通过大量的资源来获取Linux操作系统,在之前的介绍中,我们使用的是嵌入式Yocto系统。在嵌入式Linux系统的集成中,通常要包含设备驱动程序,所以我们不需要额外安装GPIO驱动程序。

步骤2:连接信号灯模块与树莓派

在树莓派上连接信号灯模块,其中包括了一个双色灯和两个单色灯,当值为0和1时,不同颜色的灯会发生变化。因此,我们需要连接3个GPIO引脚,一个用于控制双色灯,两个用于控制单色灯。

步骤3:GPIO驱动程序的编写

在Linux中,GPIO驱动程序通常是由内核提供的模块形式,我们只需要在此基础上稍微修改即可。首先需要设置GPIO引脚的模式,我们把它们配置为输出模式,然后在应用程序中使用API接口来进行控制。

在GPIO的控制过程中,需要注意一些细节问题,如需要使用Linux的gpiochip结构体来协助控制。在应用程序中,可以使用ioctl、文件系统等方式来进行GPIO操作,最终实现对信号灯的控制。

步骤4:应用程序的编写

应用程序为控制信号灯的关键,通过应用程序我们可以控制GPIO口和信号灯之间的相互关系。在应用程序的编写中,使用道路规则进行控制,符合交通场景下的需求,通过调用GPIO驱动程序来操作信号灯。

在本文中,我们介绍了如何使用Linux实现二值信号灯的控制方案。这涉及到了Linux系统的选择、硬件平台的选择、驱动程序的编写、应用程序的编写等方面的问题。通过本文的介绍,我们可以了解到Linux在物联网控制方案中的优势和应用,同时也学习到了如何将Linux的特性应用到物联网控制方案中。

相关问题拓展阅读:

  • Linux下线程同步的几种方法

Linux下线程同步的几种方法

Linux系统中,实现线程同步的方式大致分为六种,包括:互斥锁、自旋锁、信号量、条件变量、读写锁、屏障。其最常用的线程同步方式胡胡就是互斥锁、自旋锁、信号量。

1、互斥锁

互斥锁本质就是一个特殊的全局变量,拥有lock和unlock两种状态,unlock的互斥锁可以由某个线程获得,当互斥锁由某个线程持有后,这个互斥锁会锁上变成lock状态,此后只有该线程有权力打开该锁,其他想要获得该互斥锁的线程都会阻塞,直到互斥锁被解锁。

互斥锁的类型:

①普通锁:互斥锁默认类型。当一个线程对一个普通锁加锁以后,其余请求该锁的线程将形成一个等待队列,并在锁解锁后按照优先级获得它,这种锁类型保证了资源分配的公平性。一个线程如果对一个已经加锁的普通锁再次加锁,将引发死锁;对一个已经被其他线程加锁的普通锁解锁,或者对一个已经解锁的普通锁再次解锁,将导致不可预期的后果。

②检错锁:一个线程如果对一个已经加锁的检错锁再次加锁,则加锁操作返回EDEADLK;对一个已经被其他线程加锁的检错锁解锁或者对一个已经解锁做做袜的检错锁再次解锁,则解锁操作返回EPERM。

③嵌套锁:该锁允许一个线程在释放锁之前多次对它加锁而不发生死纯激锁;其他线程要获得这个锁,则当前锁的拥有者必须执行多次解锁操作;对一个已经被其他线程加锁的嵌套锁解锁,或者对一个已经解锁的嵌套锁再次解锁,则解锁操作返回EPERM。

④默认锁:一个线程如果对一个已经解锁的默认锁再次加锁,或者对一个已经被其他线程加锁的默认锁解锁,或者对一个解锁的默认锁解锁,将导致不可预期的后果;这种锁实现的时候可能被映射成上述三种锁之一。

2、自旋锁

自旋锁顾名思义就是一个死循环,不停的轮询,当一个线程未获得自旋锁时,不会像互斥锁一样进入阻塞休眠状态,而是不停的轮询获取锁,如果自旋锁能够很快被释放,那么性能就会很高,如果自旋锁长时间不能够被释放,甚至里面还有大量的IO阻塞,就会导致其他获取锁的线程一直空轮询,导致CPU使用率达到100%,特别CPU时间。

3、信号量

信号量是一个计数器,用于控制访问有限共享资源的线程数。

Linux 线程同步的三种方法

线程的更大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。

一、互斥吵大锁(mutex)

通过锁机制实现线程间的同步。

初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。

静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);

加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。

int pthread_mutex_lock(pthread_mutex *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。

int pthread_mutex_unlock(pthread_mutex_t *mutex);

销毁锁。锁在是使用完成后,需要进行销毁以释放资源。

int pthread_mutex_destroy(pthread_mutex *mutex);

view plain copy

#include

#include

#include

#include

#include “iostream”

using namespace std;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int tmp;

void* thread(void *arg)

{

cout

#include

#include “stdlib.h”

#include “unistd.h”

pthread_mutex_t mutex;

pthread_cond_t cond;

void hander(void *arg)

{

free(arg);

(void)pthread_mutex_unlock(&mutex);

}

void *thread1(void *arg)

{

pthread_cleanup_push(hander, &mutex);

while(1)

{

printf(“thread1 is running\n”);

pthread_mutex_lock(&mutex);

pthread_cond_wait(&cond, &mutex);

printf(“thread1 applied the condition\n”);

pthread_mutex_unlock(&mutex);

sleep(4);

}

pthread_cleanup_pop(0);

}

void *thread2(void *arg)

{

while(1)

{

printf(“thread2 is running\n”);

pthread_mutex_lock(&mutex);

pthread_cond_wait(&cond, &mutex);

printf(“thread2 applied the condition\n”);

pthread_mutex_unlock(&mutex);

sleep(1);

}

}

int main()

{

pthread_t thid1,thid2;

printf(“condition variable study!\n”);

pthread_mutex_init(&mutex, NULL);

pthread_cond_init(&cond, NULL);

pthread_create(&thid1, NULL, thread1, NULL);

pthread_create(&thid2, NULL, thread2, NULL);

sleep(1);

do

{

pthread_cond_signal(&cond);

}while(1);

sleep(20);

pthread_exit(0);

return 0;

}

view plain copy

#include

#include

#include “stdio.h”

#include “stdlib.h”

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

struct node

{

int n_number;

struct node *n_next;

}*head = NULL;

static void cleanup_handler(void *arg)

{

printf(“Cleanup handler of second thread./n”);

free(arg);

(void)pthread_mutex_unlock(&mtx);

}

static void *thread_func(void *arg)

{

struct node *p = NULL;

pthread_cleanup_push(cleanup_handler, p);

while (1)

{

//这个mutex主要是用来保证pthread_cond_wait的并发性

pthread_mutex_lock(&mtx);

while (head == NULL)

{

//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何

//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线

//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。

//这个时候,应该让线程继续进入pthread_cond_wait

// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,

//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立

//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源

//用这个流程是比较清楚的

pthread_cond_wait(&cond, &mtx);

p = head;

head = head->n_next;

printf(“Got %d from front of queue/n”, p->n_number);

free(p);

}

pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁

}

pthread_cleanup_pop(0);

return 0;

}

int main(void)

{

pthread_t tid;

int i;

struct node *p;

//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而

//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大

pthread_create(&tid, NULL, thread_func, NULL);

sleep(1);

for (i = 0; i n_number = i;

pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,

p->n_next = head;

head = p;

pthread_cond_signal(&cond);

pthread_mutex_unlock(&mtx); //解锁

sleep(1);

}

printf(“thread 1 wanna end the line.So cancel thread 2./n”);

//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出

//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。

pthread_cancel(tid);

pthread_join(tid, NULL);

printf(“All done — exiting/n”);

return 0;

}

三、信号量(sem)

如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以”sem_”打头。线程使用的基本信号量函数有四个。

信号量初始化。

int sem_init (sem_t *sem , int pshared, unsigned int value);

这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。

等待信号量。给信号量减1,然后等待直到信号量的值大于0。

int sem_wait(sem_t *sem);

释放信号量。信号量值加1。并通知其他等待线程。

int sem_post(sem_t *sem);

销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。

int sem_destroy(sem_t *sem);

view plain copy

#include

#include

#include

#include

#include

#include

#define return_if_fail(p) if((p) == 0){printf (“:func error!/n”, __func__);return;}

typedef struct _PrivInfo

{

sem_t s1;

sem_t s2;

time_t end_time;

}PrivInfo;

static void info_init (PrivInfo* thiz);

static void info_destroy (PrivInfo* thiz);

static void* pthread_func_1 (PrivInfo* thiz);

static void* pthread_func_2 (PrivInfo* thiz);

int main (int argc, char** argv)

{

pthread_t pt_1 = 0;

pthread_t pt_2 = 0;

int ret = 0;

PrivInfo* thiz = NULL;

thiz = (PrivInfo* )malloc (sizeof (PrivInfo));

if (thiz == NULL)

{

printf (“: Failed to malloc priv./n”);

return -1;

}

info_init (thiz);

ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);

if (ret != 0)

{

perror (“pthread_1_create:”);

}

ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);

if (ret != 0)

{

perror (“pthread_2_create:”);

}

pthread_join (pt_1, NULL);

pthread_join (pt_2, NULL);

info_destroy (thiz);

return 0;

}

static void info_init (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);

thiz->end_time = time(NULL) + 10;

sem_init (&thiz->s1, 0, 1);

sem_init (&thiz->s2, 0, 0);

return;

}

static void info_destroy (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);

sem_destroy (&thiz->s1);

sem_destroy (&thiz->s2);

free (thiz);

thiz = NULL;

return;

}

static void* pthread_func_1 (PrivInfo* thiz)

{

return_if_fail(thiz != NULL);

while (time(NULL) end_time)

{

sem_wait (&thiz->s2);

printf (“pthread1: pthread1 get the lock./n”);

sem_post (&thiz->s1);

printf (“pthread1: pthread1 unlock/n”);

sleep (1);

}

return;

}

static void* pthread_func_2 (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);

while (time (NULL) end_time)

{

sem_wait (&thiz->s1);

printf (“pthread2: pthread2 get the unlock./n”);

sem_post (&thiz->s2);

printf (“pthread2: pthread2 unlock./n”);

sleep (1);

}

return;

}

香港服务器首选树叶云,2H2G首月10元开通。
树叶云(www.IDC.Net)提供简单好用,价格厚道的香港/美国云服务器和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/190612.html<

(0)
运维的头像运维
上一篇2025-03-31 18:04
下一篇 2025-03-31 18:05

相关推荐

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注