实例分析MySQL性能瓶颈排查及定位(什么是mysql性能瓶颈)

实例分析MySQL性能瓶颈排查及定位(什么是mysql性能瓶颈)

收到某线上业务后端某个MySQL实例负载较高的告警信息,于是登录服务器查看确认。 1、首先我们在OS层面进行检查,确认登录服务器后,我们的目的是先确认当前是哪些进程导致的

收到某线上业务后台MySQL实例负载较高的告警信息,登录服务器查看确认。

首先我们进行OS层面的检查确认

登入服务器后,我们的目的是首先要确认当前到底是哪些进程引起的负载高,以及这些进程卡在什么地方,瓶颈是什么。

通常来说, 服务器上最容易成为瓶颈的是磁盘I/O子系统 ,因为它的读写速度通常是最慢的。即便是现在的PCIe SSD,其随机I/O读写速度也是不如内存来得快。当然了,引起磁盘I/O慢得原因也有多种,需要确认哪种引起的。

步,我们一般先看整体负载如何,负载高的话,肯定所有的进程跑起来都慢。

可以执行指令 w 或者 sar -q 1 来查看负载数据,例如:

[yejr@imysql.com:~ ]# w
11:52:58 up 702 days, 56 min,  1 user,  load average: 7.20, 6.70, 6.47
USER     TTY      FROM              LOGIN@   IDLE   JCPU   PCPU WHAT
root     pts/0    1.xx.xx.xx        11:51    0.00s  0.03s  0.00s w

或者 sar -q 的观察结果:

[yejr@imysql.com:~ ]# sar -q 1
Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com)     01/13/2016     _x86_64_    (24 CPU)
02:51:18 PM   runq-sz  plist-sz   ldavg-1   ldavg-5  ldavg-15   blocked
02:51:19 PM         4      2305      6.41      6.98      7.12         3
02:51:20 PM         2      2301      6.41      6.98      7.12         4
02:51:21 PM         0      2300      6.41      6.98      7.12         5
02:51:22 PM         6      2301      6.41      6.98      7.12         8
02:51:23 PM         2      2290      6.41      6.98      7.12         8

load average大意表示当前CPU中有多少任务在排队等待,等待越多说明负载越高,跑数据库的服务器上,一般load值超过5的话,已经算是比较高的了。

引起load高的原因也可能有多种:

  • 某些进程/服务消耗更多CPU资源(服务响应更多请求或存在某些应用瓶颈);
  • 发生比较严重的swap(可用物理内存不足);
  • 发生比较严重的中断(因为SSD或网络的原因发生中断);
  • 磁盘I/O比较慢(会导致CPU一直等待磁盘I/O请求);

这时我们可以执行下面的命令来判断到底瓶颈在哪个子系统:

[yejr@imysql.com:~ ]# top
top – 11:53:04 up 702 days, 56 min,  1 user,  load average: 7.18, 6.70, 6.47
Tasks: 576 total,   1 running, 575 sleeping,   0 stopped,   0 zombie
Cpu(s):  7.7%us,  3.4%sy,  0.0%ni, 77.6%id, 11.0%wa,  0.0%hi,  0.3%si,  0.0%st
Mem:  49374024k total, 32018844k used, 17355180k free,   115416k buffers
Swap: 16777208k total,   117612k used, 16659596k free,  5689020k cached

PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
14165 mysql     20   0 8822m 3.1g 4672 S 162.3  6.6  89839:59 mysqld
40610 mysql     20   0 25.6g  14g 8336 S 121.7 31.5 282809:08 mysqld
49023 mysql     20   0 16.9g 5.1g 4772 S  4.6 10.8   34940:09 mysqld
很明显是前面两个mysqld进程导致整体负载较高。

而且,从 Cpu(s) 这行的统计结果也能看的出来, %us 和 %wa 的值较高,表示 当前比较大的瓶颈可能是在用户进程消耗的CPU以及磁盘I/O等待上 。

我们先分析下磁盘I/O的情况。

执行 sar -d 确认磁盘I/O是否真的较大:

[yejr@imysql.com:~ ]# sar -d 1
Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com)     01/13/2016     _x86_64_    (24 CPU)
11:54:32 AM    dev8-0   5338.00 162784.00   1394.00     30.76      5.24      0.98      0.19    100.00
11:54:33 AM    dev8-0   5134.00 148032.00  32365.00     35.14      6.93      1.34      0.19    100.10
11:54:34 AM    dev8-0   5233.00 161376.00    996.00     31.03      9.77      1.88      0.19    100.00
11:54:35 AM    dev8-0   4566.00 139232.00   1166.00     30.75      5.37      1.18      0.22    100.00
11:54:36 AM    dev8-0   4665.00 145920.00    630.00     31.41      5.94      1.27      0.21    100.00
11:54:37 AM    dev8-0   4994.00 156544.00    546.00     31.46      7.07      1.42      0.20    100.00

再利用 iotop 确认到底哪些进程消耗的磁盘I/O资源最多:

[yejr@imysql.com:~ ]# iotop
Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s
TID  PRIO  USER     DISK READ  DISK WRITE  SWAPIN     IO>    COMMAND
16397 be/4 mysql       8.92 M/s    0.00 B/s  0.00 % 94.77 % mysqld –basedir=/usr/local/m~og_3320/mysql.sock –port=3320
7295 be/4 mysql      10.98 M/s    0.00 B/s  0.00 % 93.59 % mysqld –basedir=/usr/local/m~og_3320/mysql.sock –port=3320
14295 be/4 mysql      10.50 M/s    0.00 B/s  0.00 % 93.57 % mysqld –basedir=/usr/local/m~og_3320/mysql.sock –port=3320
14288 be/4 mysql      14.30 M/s    0.00 B/s  0.00 % 91.86 % mysqld –basedir=/usr/local/m~og_3320/mysql.sock –port=3320
14292 be/4 mysql      14.37 M/s    0.00 B/s  0.00 % 91.23 % mysqld –basedir=/usr/local/m~og_3320/mysql.sock –port=3320

可以看到,端口号是3320的实例消耗的磁盘I/O资源比较多,那就看看这个实例里都有什么查询在跑吧。

MySQL层面检查确认

首先看下当前都有哪些查询在运行:

[yejr@imysql.com(db)]> mysqladmin pr|grep -v Sleep
+—-+—-+———-+—-+——-+—–+————–+———————————————————————————————–+
| Id |User| Host     | db |Command|Time | State        | Info                                                                                          |
+—-+—-+———-+—-+——-+—–+————–+———————————————————————————————–+
| 25 | x | 10.x:8519 | db | Query | 68  | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404612 order by Fvideoid) t1 |
| 26 | x | 10.x:8520 | db | Query | 65  | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>484915 order by Fvideoid) t1 |
| 28 | x | 10.x:8522 | db | Query | 130 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404641 order by Fvideoid) t1 |
| 27 | x | 10.x:8521 | db | Query | 167 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324157 order by Fvideoid) t1 |
| 36 | x | 10.x:8727 | db | Query | 174 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324346 order by Fvideoid) t1 |
+—-+—-+———-+—-+——-+—–+————–+———————————————————————————————–+
可以看到有不少慢查询还未完成,从slow query log中也能发现,这类SQL发生的频率很高。

这是一个非常低效的SQL写法,导致需要对整个主键进行扫描,但实际上只需要取得一个值而已,从slow query log中可看到:

Rows_sent: 1  Rows_examined: 5502460

每次都要扫描500多万行数据,却只为读取一个值,效率非常低。

经过分析,这个SQL稍做简单改造即可在个位数毫秒级内完成,原先则是需要150-180秒才能完成,提升了N次方。
改造的方法是: 对查询结果做一次倒序排序,取得条记录即可 。而原先的做法是对结果正序排序,取最后一条记录,汗啊。。。

写在最后,小结

在这个例子中,产生瓶颈的原因比较好定位,SQL优化也不难,实际线上环境中,通常有以下几种常见的原因导致负载较高:
一次请求读写的数据量太大,导致磁盘I/O读写值较大,例如一个SQL里要读取或更新几万行数据甚至更多,这种是想办法减少一次读写的数据量;
SQL查询中没有适当的索引可以用来完成条件过滤、排序(ORDER BY)、分组(GROUP BY)、数据聚合(MIN/MAX/COUNT/AVG等),添加索引或者进行SQL改写吧;
瞬间突发有大量请求,这种一般只要能扛过峰值就好,保险起见还是要适当提高服务器的配置,万一峰值抗不过去就可能发生雪崩效应;
因为某些定时任务引起的负载升高,比如做数据统计分析和备份,这种对CPU、内存、磁盘I/O消耗都很大,放在独立的slave服务器上执行;
服务器自身的节能策略发现负载较低时会让CPU降频,当发现负载升高时再自动升频,但通常不是那么及时,结果导致CPU性能不足,抗不过突发的请求;
使用raid卡的时候,通常配备BBU(cache模块的备用电池),早期一般采用锂电池技术,需要定期充放电(DELL服务器90天一次,IBM是30天),我们可以通过监控在下一次充放电的时间前在业务低谷时提前对其进行放电,不过新一代服务器大多采用电容式电池,也就不存在这个问题了。
文件系统采用ext4甚至ext3,而不是xfs,在高I/O压力时,很可能导致%util已经跑到100%了,但iops却无法再提升,换成xfs一般可获得大幅提升;
内核的io scheduler策略采用cfq而非deadline或noop,可以在线直接调整,也可获得大幅提升。

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/114196.html<

(0)
运维的头像运维
上一篇2025-02-17 19:13
下一篇 2025-02-17 19:15

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注