随着各种数字媒体技术的发展,计算机图像处理成为一个越来越重要的领域,而实时图像处理更是其中的热门话题之一。在这方面,Linux和OpenCV是两个非常好的选择。
Linux是一个开源操作系统,具有灵活、安全、稳定等特点,可以免费获取和使用。OpenCV则是一个计算机视觉库,提供了一系列的函数和类,可以进行图像处理、模式识别等方面的工作。此外,OpenCV还支持多种编程语言,包括C++、Python等。
在这篇文章中,我们将介绍如何利用Linux和OpenCV配合摄像头进行实时图像处理,包括图像采集、预处理、特征提取和显示。
之一步:图像采集
需要获取一个摄像头。在Linux上,摄像头的驱动程序通常是通过V4L(Video for Linux)接口实现的。可以使用一些命令来测试摄像头是否正常工作,例如:
$ ls /dev/video*
/dev/video0
$ v4l2-ctl –list-devices
USB Camera: USB Camera (u-0000:00:14.0-1):
/dev/video0
这里显示了一个名为“USB Camera”的设备,其对应的V4L子设备为“/dev/video0”,说明摄像头可以正常工作。
在程序中,可以使用OpenCV提供的VideoCapture类来获取摄像头图像。比如,以下代码可以打开摄像头,并进行一些初始化工作:
cv::VideoCapture cap(0);
if (!cap.isOpened()) {
std::cerr
return -1;
}
cv::Mat frame;
cap.set(cv::CAP_PROP_FRAME_WIDTH, 640);
cap.set(cv::CAP_PROP_FRAME_HEIGHT, 480);
cap.set(cv::CAP_PROP_FPS, 30);
这里,cap对象是一个VideoCapture类的实例,构造函数的参数“0”表示使用系统默认的摄像头设备。isOpened()函数可以用来检查摄像头是否成功打开。set()函数则用于设置摄像头的一些参数,如图像宽度、高度和帧率等。
第二步:图像预处理
获取摄像头图像后,需要对其进行一些处理以便后续的操作。常见的图像预处理包括图像去噪、颜色空间转换、直方图均衡化等。
其中,图像去噪是最基本的操作之一。可以使用OpenCV提供的各种滤波器进行去噪,如均值滤波、中值滤波、高斯滤波等。例如,以下代码使用高斯滤波器对摄像头图像进行去噪:
cv::Mat frame, frame_blur;
cv::GaussianBlur(frame, frame_blur, cv::Size(3, 3), 0, 0);
这里使用了GaussianBlur函数,参数Size(3, 3)表示卷积核大小为3×3,0和0表示标准差,在这里可以用来控制滤波的强度。
另外,颜色空间转换也是常见的图像预处理方法。OpenCV提供了cv::cvtColor()函数,可以实现常见的颜色空间转换,如RGB到灰度、RGB到HSV等。例如,以下代码将摄像头图像转换为灰度图像:
cv::Mat frame_gray;
cv::cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY);
这里使用了COLOR_BGR2GRAY参数,表示将BGR彩色空间转换为灰度空间。
第三步:特征提取
特征提取是实时图像处理的核心部分,可以从图像中提取出有用的信息,并帮助我们实现各种应用。在这方面,OpenCV提供了各种特征提取函数和算法,如SIFT、SURF、ORB等。
以ORB算法为例,以下代码展示了如何使用OpenCV进行ORB特征提取:
cv::Mat frame_gray;
cv::cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY);
std::vector keypoints;
cv::Mat descriptors;
cv::Ptr orb = cv::ORB::create(500, 1.2f, 8, 31, 0, 2, cv::ORB::HARRIS_SCORE, 31, 20);
orb->detectAndCompute(frame_gray, cv::noArray(), keypoints, descriptors);
这里,orb是一个ORB类的指针,我们可以设置一些参数,如特征点数量、尺度空间参数、边界宽度等等。detectAndCompute()函数可以同时检测特征点并计算它们的描述符。
第四步:显示图像
我们需要将图像显示在屏幕上或保存到文件中。OpenCV提供了imshow()函数和imwrite()函数来实现这一目的。
以下是使用imshow()函数将图像显示在屏幕上的代码示例:
cv::namedWindow(“Camera”, cv::WINDOW_NORMAL);
cv::imshow(“Camera”, frame);
cv::wtKey(1);
这里使用了namedWindow()函数创建了一个名为“Camera”的窗口,并将摄像头图像显示在其中。wtKey()函数用于暂停程序的执行,其中参数1表示每帧图像的时间间隔,单位为毫秒。
除此之外,可以利用imwrite()函数将图像保存到磁盘中:
cv::imwrite(“/path/to/file.png”, frame);
这里将摄像头图像保存为PNG格式的文件。
相关问题拓展阅读:
- opencv调用摄像头函数
opencv调用摄像头函数
#include “opencv2/opencv.hpp”
int main()
{
//读取摄像头
//声明IplImage指针
IplImage* pFrame = NULL;
CvCapture* pCapture = NULL;
//窗口通过窗口名来标识
cvNamedWindow(“亮含迟video”, CV_WINDOW_AUTOSIZE);
pCapture = cvCreateCameraCapture(CV_CAP_ANY);
cvWaitKey(0);
pFrame = cvQueryFrame( pCapture );
//while(pFrame = cvQueryFrame( pCapture ))
//{
//cvShowImage(“video”, pFrame);
////延时 ,不然不会显示图像的,应该是扫描太快了
//cvWaitKey(33); //不然会因为太快导致显示还没完九需要去显示下一帧
//}
cvShowImage(“video”, pFrame);
cvWaitKey(0);
//释放图像
cvReleaseImage(&pFrame);
//销毁窗口
cvDestroyWindow(“video”);
//释放摄像敬李老纤设备
cvReleaseCapture(&pCapture);
return 0;
}
//网上粘的希望有用
这句话有问题,cvShowImage(“OutImage”,capture);
IplImage* image = cvQueryFrame(capture); 这样才得到图片,要显示的应该是image。
cvShowImage(“OutImage”,image);
//////////灶握///////誉辩首///庆数//////////////////////////////////////////////////////////
这个是opencv的c接口,建议使用c++接口,简单得多。
cv::VideoCapture Camera(0);
if (!Camera.isOpened())
return -1;
while (cv::waitKey(33) != 27)
{
cv::Mat mat;
if (!Camera.read(mat))
break;
cv::imshow(“video”, mat);
}
Camera.release();
return 0;
你把cvWaitKey(0)改为cvWaitKey(1)或者把括号里面的数改为10,100试试
关于linux opencv 摄像头的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
香港服务器首选树叶云,2H2G首月10元开通。
树叶云(www.IDC.Net)提供简单好用,价格厚道的香港/美国云服务器和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。
文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/166134.html<