部署高可用Spark集群:Spark+Zookeeper

spark是一个用于大规模数据处理的统一计算引擎。适用于各种各样原先需要多种不同的分布式平台处理的场景,包括批处理、迭代计算、交互式查询、流处理。通过统一的框架将各种处理流程整合到一起。

Spark三种分布式部署方式比较

目前Apache Spark支持三种分布式部署方式,分别是standalone、spark on mesos和 spark on YARN,详情参考。

Spark standalone模式分布式部署

环境介绍

主机名 应用 tvm11 zookeeper tvm12 zookeeper tvm13 zookeeper、spark(master)、spark(slave)、Scala tvm14 spark(backup)、spark(slave)、Scala

tvm15 spark(slave)、Scala

说明

依赖scala:

Note that support for Java 7, Python 2.6 and old Hadoop versions before 2.6.5 were removed as of Spark 2.2.0. Support for Scala 2.10 was removed as of 2.3.0. Support for Scala 2.11 is deprecated as of Spark 2.4.1 and will be removed in Spark 3.0.

zookeeper: Master结点存在单点故障,所以要借助zookeeper,至少启动两台Master结点来实现高可用,配置方案比较简单。

安装scala

由上面的说明可知,spark对scala版本依赖较为严格,spark-2.4.5依赖scala-2.12.x,所以首先要安装scala-2.12.x,在此选用scala-2.12.10。使用二进制安装:

$ wget https://downloads.lightbend.com/scala/2.12.10/scala-2.12.10.tgz
$ tar zxvf scala-2.12.10.tgz -C /path/to/scala_install_dir

如果系统环境也要使用相同版本的scala,可以将其加入到用户环境变量(.bashrc或.bash_profile)。

安装spark

打通三台spark机器的work用户ssh通道;

现在安装包到master机器:tvm13;

注意提示信息,及Hadoop版本(与已有环境匹配,如果不匹配则选非预编译的版本自己编译)。

解压到安装目录即可。

配置spark

spark服务配置文件主要有两个:spark-env.sh和slaves。

spark-evn.sh:配置spark运行相关环境变量

slaves:指定worker服务器

配置spark-env.sh:cp spark-env.sh.template spark-env.sh

export JAVA_HOME=/data/template/j/java/jdk1.8.0_201
export SCALA_HOME=/data/template/s/scala/scala-2.12.10
export SPARK_WORKER_MEMORY=2048m
export SPARK_WORKER_CORES=2
export SPARK_WORKER_INSTANCES=2
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=tvm11:2181,tvm12:2181,tvm13:2181 -Dspark.deploy.zookeeper.dir=/data/template/s/spark"

# 关于 SPARK_DAEMON_JAVA_OPTS 参数含义:

# -Dspark.deploy.recoverMode=ZOOKEEPER #代表发生故障使用zookeeper服务# -Dspark.depoly.zookeeper.url=master.hadoop,slave1.hadoop,slave1.hadoop #主机名的名字# -Dspark.deploy.zookeeper.dir=/spark #spark要在zookeeper上写数据时的保存目录

# 其他参数含义:https://blog.csdn.net/u010199356/article/details/89056304

配置slaves:cp slaves.template slaves

# A Spark Worker will be started on each of the machines listed below.
tvm13
tvm14
tvm15

配置 spark-default.sh ,主要用于spark执行任务(可以命令行动态指定):

# http://spark.apache.org/docs/latest/configuration.html#configuring-logging# spark-defaults.sh
spark.app.name                                YunTuSpark
spark.driver.cores                            2
spark.driver.memory                           2g
spark.master                                  spark://tvm13:7077,tvm14:7077
spark.eventLog.enabled                        true
spark.eventLog.dir                            hdfs://cluster01/tmp/event/logs
spark.serializer                              org.apache.spark.serializer.KryoSerializer
spark.serializer.objectStreamReset            100
spark.executor.logs.rolling.time.interval     daily
spark.executor.logs.rolling.maxRetainedFiles  30
spark.ui.enabled                              true
spark.ui.killEnabled                          true
spark.ui.liveUpdate.period                    100ms
spark.ui.liveUpdate.minFlushPeriod            3s
spark.ui.port                                 4040
spark.history.ui.port                         18080
spark.ui.retainedJobs                         100
spark.ui.retainedStages                       100
spark.ui.retainedTasks                        1000
spark.ui.showConsoleProgress                  true
spark.worker.ui.retainedExecutors             100
spark.worker.ui.retainedDrivers               100
spark.sql.ui.retainedExecutions               100
spark.streaming.ui.retainedBatches            100
spark.ui.retainedDeadExecutors                100
# spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"

hdfs资源准备

因为 spark.eventLog.dir 指定为hdfs存储,所以需要在hdfs预先创建相应的目录文件:

hdfs dfs -mkdir -p hdfs://cluster01/tmp/event/logs

配置系统环境变量

编辑 ~/.bashrc :

export SPARK_HOME=/data/template/s/spark/spark-2.4.5-bin-hadoop2.7
export PATH=$SPARK_HOME/bin/:$PATH

分发

以上配置完成后,将 /path/to/spark-2.4.5-bin-hadoop2.7 分发至各个slave节点,并配置各个节点的环境变量。

启动

先在master节点启动所有服务:./sbin/start-all.sh

然后在backup节点单独启动master服务:./sbin/start-master.sh

查看状态

启动完成后到web去查看:

master(8081端口):Status: ALIVE

backup(8080端口):Status: STANDBY

完成!

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/220746.html<

(0)
运维的头像运维
上一篇2025-04-14 17:23
下一篇 2025-04-14 17:24

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注