在 Kubernetes 上部署一个深度学习模型

了解如何使用 Kubermatic Kubernetes 平台来部署、扩展与管理图像识别预测的深度学习模型。

随着企业增加了对人工智能(AI)、机器学习(ML)与深度学习(DL)的使用,出现了一个关键问题:如何将机器学习的开发进行规模化与产业化?这些讨论经常聚焦于机器学习模型本身;然而,模型仅仅只是完整解决方案的其中一环。为了达到生产环境的应用和规模,模型的开发过程必须还包括一个可以说明开发前后关键活动以及可公用部署的可重复过程。

本文演示了如何使用 Kubermatic Kubernetes 平台 对图像识别预测的深度学习模型进行部署、扩展与管理。

Kubermatic Kubernetes 平台是一个生产级的开源 Kubernetes 集群管理工具,提供灵活性和自动化,与机器学习/深度学习工作流程整合,具有完整的集群生命周期管理。

开始

这个例子部署了一个用于图像识别的深度学习模型。它使用了 CIFAR-10 数据集,包含了 60,000 张分属 10 个类别的 32×32 彩色图,同时使用了 Apache MXNet 的 Gluon 与 NVIDIA GPU 进行加速计算。如果你希望使用 CIFAR-10 数据集的预训练模型,可以查阅其 入门指南。

使用训练集中的样本对模型训练 200 次,只要训练误差保持缓慢减少,就可以保证模型不会过拟合。下方图展示了训练的过程:

训练结束后,必须保存模型训练所得到的参数,以便稍后可以加载它们:

file_name = "net.params"
net.save_parameters(file_name)

一旦你的模型训练好了,就可以用 Flask 服务器来封装它。下方的程序演示了如何接收请求中的一张图片作为参数,并在响应中返回模型的预测结果:

from gluoncv.model_zoo import get_model
import matplotlib.pyplot as plt
from mxnet import gluon, nd, image
from mxnet.gluon.data.vision import transforms
from gluoncv import utils
from PIL import Image
import io
import flask
app = flask.Flask(__name__)

@app.route("/predict",methods=["POST"])
def predict():
    if flask.request.method == "POST":
        if flask.request.files.get("img"):
           img = Image.open(io.BytesIO(flask.request.files["img"].read()))
            transform_fn = transforms.Compose([
            transforms.Resize(32),
            transforms.CenterCrop(32),
            transforms.ToTensor(),
            transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])])
            img = transform_fn(nd.array(img))
            net = get_model('cifar_resnet20_v1', classes=10)
            net.load_parameters('net.params')
            pred = net(img.expand_dims(axis=0))
            class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
                       'dog', 'frog', 'horse', 'ship', 'truck']
            ind = nd.argmax(pred, axis=1).astype('int')
            prediction = 'The input picture is classified as [%s], with probability %.3f.'%
                         (class_names[ind.asscalar()], nd.softmax(pred)[0][ind].asscalar())
    return prediction

if __name__ == '__main__':
   app.run(host='0.0.0.0')

容器化模型

在将模型部署到 Kubernetes 前,你需要先安装 Docker 并使用你的模型创建一个镜像。

  1. 下载、安装并启动 Docker:

    sudo yum install -y yum-utils device-mapper-persistent-data lvm2
    sudo yum-config-manager --add-repo <https://download.docker.com/linux/centos/docker-ce.repo>
    sudo yum install docker-ce
    sudo systemctl start docker
    
  2. 创建一个你用来管理代码与依赖的文件夹:

    mkdir kubermatic-dl
    cd kubermatic-dl
    
  3. 创建 requirements.txt 文件管理代码运行时需要的所有依赖:

    flask
    gluoncv
    matplotlib
    mxnet
    requests
    Pillow
    
  4. 创建 Dockerfile,Docker 将根据这个文件创建镜像:

    FROM python:3.6
    WORKDIR /app
    COPY requirements.txt /app
    RUN pip install -r ./requirements.txt
    COPY app.py /app
    CMD ["python", "app.py"]
    

    这个 Dockerfile 主要可以分为三个部分。首先,Docker 会下载 Python 的基础镜像。然后,Docker 会使用 Python 的包管理工具 pip 安装 requirements.txt 记录的包。最后,Docker 会通过执行 python app.py 来运行你的脚本。

  5. 构建 Docker 容器:

    sudo docker build -t kubermatic-dl:latest .
    

    这条命令使用 kubermatic-dl 镜像为你当前工作目录的代码创建了一个容器。

  6. 使用

    sudo docker run -d -p 5000:5000 kubermatic-dl
    

    命令检查你的容器可以在你的主机上正常运行。

  7. 使用

    sudo docker ps -a
    

    命令查看你本地容器的运行状态:

将你的模型上传到 Docker Hub

在向 Kubernetes 上部署模型前,你的镜像首先需要是公开可用的。你可以通过将你的模型上传到 Docker Hub 来将它公开。(如果你没有 Docker Hub 的账号,你需要先创建一个)

  1. 在终端中登录 Docker Hub 账号:

    sudo docker login
    
  2. 给你的镜像打上标签,这样你的模型上传到 Docker Hub 后也能拥有版本信息:

    sudo docker tag <your-image-id> <your-docker-hub-name>/<your-app-name>
    
    sudo docker push <your-docker-hub-name>/<your-app-name>
    

  3. 使用

    sudo docker images
    

    命令检查你的镜像的 ID。

部署你的模型到 Kubernetes 集群

  1. 首先在 Kubermatic Kubernetes 平台创建一个项目, 然后根据 快速开始 创建一个 Kubernetes 集群。

  2. 下载用于访问你的集群的 kubeconfig,将它放置在下载目录中,并记得设置合适的环境变量,使得你的环境能找到它:

  3. 使用 kubectl 命令检查集群信息,例如,需要检查 kube-system 是否在你的集群正常启动了就可以使用命令 kubectl cluster-info

  4. 为了在集群中运行容器,你需要创建一个部署用的配置文件(deployment.yaml),再运行 apply 命令将其应用于集群中:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: kubermatic-dl-deployment
    spec:
      selector:
        matchLabels:
          app: kubermatic-dl
      replicas: 3
      template:
        metadata:
          labels:
            app: kubermatic-dl
        spec:
         containers:
         - name: kubermatic-dl
           image: kubermatic00/kubermatic-dl:latest
           imagePullPolicy: Always
           ports:
           - containerPort: 8080
    
    
    kubectl apply -f deployment.yaml`
    
  5. 为了将你的部署开放到公网环境,你需要一个能够给你的容器创建外部可达 IP 地址的服务:

    kubectl expose deployment kubermatic-dl-deployment  --type=LoadBalancer --port 80 --target-port 5000`
    
  6. 就快大功告成了!首先检查你布署的服务的状态,然后通过 IP 请求的你图像识别 API:

    kubectl get service
    

  7. 最后根据你的外部 IP 使用以下两张图片对你的图像识别服务进行测试:

总结

在这篇教程中,你可以创建一个深度学习模型,并且使用 Flask 提供 REST API 服务。它介绍了如何将应用放在 Docker 容器中,如何将这个镜像上传到 Docker Hub 中,以及如何使用 Kubernetes 部署你的服务。只需几个简单的命令,你就可以使用 Kubermatic Kubernetes 平台部署该应用程序,并且开放服务给别人使用。


文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/224069.html<

(0)
运维的头像运维
上一篇2025-04-16 06:26
下一篇 2025-04-16 06:27

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注