GreatSQL vs MySQL性能测试来了,你学会了吗?

1.结论先行

  • 无论ibp(innodb_buffer_pool_size)是否充足,MySQL的性能都远不如GreatSQL。
  • MySQL的性能平均约为GreatSQL的70%(最高84.5%,最低61.7%)。
  • 在ibp充分的情况下,随着并发数的增加,MySQL并没有表现出该有的性能提升,反倒掉头向下,可见还是不够稳定。
  • 在ibp不够的情况下,GreatSQL开启thread pool性能有所提升;当ibp充足的情况下,区别就不大了。

MySQL vs GreatSQL性能数据对比

48G

96G

144G

192G

avg

MySQL  vs GreatSQL

0.6173

0.735

0.721

0.8449

0.7295

各数据库版本分别为

MySQL 8.0.30 MySQL Community Server – GPL

GreatSQL 8.0.25-16 GreatSQL, Release 16, Revision 8bb0e5af297

2.测试结果数据

2.1 ibp=48G

TPS

8th

16th

32th

64th

128th

GreatSQL-thdpool

969.16

1324.21

1661.57

2007.98

2331.4

GreatSQL

873.06

1146.85

1371.34

1509.8

1699.19

MySQL

686.14

846.5

915.15

1073.95

1439.29

P.S,后缀加上 thdpool 表示启用了thread pool

QPS

8th

16th

32th

64th

128th

GreatSQL-thdpool

19383.2

26484.14

33231.49

40159.56

46627.89

GreatSQL

17461.16

22937.14

27426.87

30196.02

33983.78

MySQL

13722.8

16929.94

18303.03

21479

28785.7

2.2 ibp=96G

TPS

8th

16th

32th

64th

128th

GreatSQL-thdpool

1074.57

1407.54

1706.35

2206.06

2810.39

GreatSQL

1013.2

1198.5

1546.53

2033.04

2419.47

MySQL

751.7

986.11

1218.87

1778.67

2065.69

QPS

8th

16th

32th

64th

128th

GreatSQL-thdpool

21491.46

28150.73

34127

44121.2

56207.88

GreatSQL

20264.04

23969.97

30930.56

40660.83

48389.42

MySQL

15034.11

19722.27

24377.47

35573.39

41313.8

2.3 ibp=144G

TPS

8th

16th

32th

64th

128th

GreatSQL-thdpool

1059.46

1422.72

1853.24

2710.31

3481.66

GreatSQL

857.28

1327.67

1767.78

2660.8

3148.06

MySQL

857.05

1149.79

2038.3

2516.41

2510.15

QPS

8th

16th

32th

64th

128th

GreatSQL-thdpool

21189.17

28454.3

37064.79

54206.13

69633.25

GreatSQL

17145.52

26553.48

35355.47

53215.89

62961.17

MySQL

17140.96

22995.73

40765.95

50328.29

50202.93

2.4 ibp=192G

TPS

8th

16th

32th

64th

128th

GreatSQL

1406.86

1316.02

2144.17

4114.55

3310.67

GreatSQL-thdpool

1391.2

1247.93

2085.81

4053.76

3113.97

MySQL

1367.31

2629.75

2940.51

2687.48

2797.06

QPS

8th

16th

32th

64th

128th

GreatSQL

28137.19

26320.43

42883.45

82291

66213.47

GreatSQL-thdpool

27823.9

24958.68

41716.16

81075.21

62279.48

MySQL

27346.18

52595.01

58810.18

53749.63

55941.29

2.5 GreatSQL不同ibp下的数据

GreatSQL

TPS

8th

16th

32th

64th

128th

QPS

8th

16th

32th

64th

128th

GreatSQL-thdpool(48G)

969.16

1324.21

1661.57

2007.98

2331.4

GreatSQL-thdpool(48G)

19383.2

26484.14

33231.49

40159.56

46627.89

GreatSQL(48G)

873.06

1146.85

1371.34

1509.8

1699.19

GreatSQL(48G)

17461.16

22937.14

27426.87

30196.02

33983.78

GreatSQL-thdpool(96G)

1074.57

1407.54

1706.35

2206.06

2810.39

GreatSQL-thdpool(96G)

21491.46

28150.73

34127

44121.2

56207.88

GreatSQL(96G)

1013.2

1198.5

1546.53

2033.04

2419.47

GreatSQL(96G)

20264.04

23969.97

30930.56

40660.83

48389.42

GreatSQL-thdpool(144G)

1059.46

1422.72

1853.24

2710.31

3481.66

GreatSQL-thdpool(144G)

21189.17

28454.3

37064.79

54206.13

69633.25

GreatSQL(144G)

857.28

1327.67

1767.78

2660.8

3148.06

GreatSQL(144G)

17145.52

26553.48

35355.47

53215.89

62961.17

GreatSQL(192G)

1406.86

1316.02

2144.17

4114.55

3310.67

GreatSQL(192G)

28137.19

26320.43

42883.45

82291

66213.47

GreatSQL-thdpool(192G)

1391.2

1247.93

2085.81

4053.76

3113.97

GreatSQL-thdpool(192G)

27823.9

24958.68

41716.16

81075.21

62279.48

2.6 MySQL不同ibp下的数据

MySQL

TPS

8th

16th

32th

64th

128th

QPS

8th

16th

32th

64th

128th

MySQL(48G)

686.14

846.5

915.15

1073.95

1439.29

MySQL(48G)

13722.8

16929.94

18303.03

21479

28785.7

MySQL(96G)

751.7

986.11

1218.87

1778.67

2065.69

MySQL(96G)

15034.11

19722.27

24377.47

35573.39

41313.8

MySQL(144G)

857.05

1149.79

2038.3

2516.41

2510.15

MySQL(144G)

17140.96

22995.73

40765.95

50328.29

50202.93

MySQL(192G)

1367.31

2629.75

2940.51

2687.48

2797.06

MySQL(192G)

27346.18

52595.01

58810.18

53749.63

55941.29

测试环境&测试模式

3.1 测试工具

sysbench

/usr/local/bin/sysbench --version
sysbench 1.1.0

P.S,该版本是楼方鑫修改后的,增加了99.9%的RT统计值,例如:

[1s ] thds:128 tps:10285.06 qps:208112.71(r/w/o:145769.21/41646.36/20697.15) lat (ms,99%,99%,99.9%):24.83/24.83/28.67 err/s:0.00 reconn/s:0.00
[2s ] thds:128 tps:9968.88 qps:199013.18(r/w/o:139399.13/39676.28/19937.76) lat (ms,99%,99%,99.9%):20.00/20.00/24.38 err/s:0.00 reconn/s:0.00
[3s ] thds:128 tps:10214.11 qps:204613.28(r/w/o:143162.59/41022.47/20428.22) lat (ms,99%,99%,99.9%):19.29/19.29/23.10 err/s:0.00 reconn/s:0.00
[4s ] thds:128 tps:10227.68 qps:204402.77(r/w/o:143127.62/40819.79/20455.37) lat (ms,99%,99%,99.9%):17.95/17.95/20.00 err/s:0.00 reconn/s:0.00
[5s ] thds:128 tps:10466.08 qps:209233.51(r/w/o:146497.06/41804.30/20932.15) lat (ms,99%,99%,99.9%):19.29/19.29/21.11 err/s:0.00 reconn/s:0.00

3.2 测试模式

  • 利用sysbench生成64个表,每个表1250万条记录。
  • 数据库总大小约191G。
  • sysbench采用 oltp_read_write 模式。
  • innodb_flush_method = O_DIRECT_NO_FSYNC。
  • GreatSQL在需要时才开启thread pool,MySQL不支持thread pool。
  • 默认关闭InnoDB PQ。
  • 因为没有额外测试机,所以采用本地socket方式连接,顺便关闭网络监听设置。
  • 测试资源有限,所以只测试单机模式,没有开启MGR。

3.3 测试机硬件配置

  • 最大物理内存:376G,但数据库分配IBP时分别为48G、96G、144G、192G,没有将物理内存全部耗尽。
  • 磁盘:Dell NVMe SSD
$ nvme list | grep nvme1
/dev/nvme1n1 90L0A019TAHR
Dell Express Flash CD5 3.84T SFF 1
2.86 TB /3.84 TB 512 B +0 B 1.1.1
  • 文件系统、ioscheduler
$ df -hT | grep nvme1
/dev/nvme1n1p1 xfs 3.5T 2.9T 706G 81%/data_nvme1n1p1

$ cat /sys/block/nvme1n1/queue/scheduler
[none] mq-deadline kyber bfq
  • CPU
Architecture:        x86_64
CPU op-mode(s):32-bit,64-bit
Byte Order: Little Endian
CPU(s):176
On-line CPU(s) list:0-175
Thread(s) per core:2
Core(s) per socket:22
Socket(s):4
NUMA node(s):4
Vendor ID: GenuineIntel
BIOS Vendor ID: Intel
CPU family:6
Model:85
Model name: Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz
BIOS Model name: Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz
Stepping:7
CPU MHz:2800.924
CPU max MHz:3700.0000
CPU min MHz:1000.0000
BogoMIPS:4200.00
L1d cache:32K
L1i cache:32K
L2 cache:1024K
L3 cache:30976K
NUMA node0 CPU(s):0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156,160,164,168,172
NUMA node1 CPU(s):1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101,105,109,113,117,121,125,129,133,137,141,145,149,153,157,161,165,169,173
NUMA node2 CPU(s):2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90,94,98,102,106,110,114,118,122,126,130,134,138,142,146,150,154,158,162,166,170,174
NUMA node3 CPU(s):3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111,115,119,123,127,131,135,139,143,147,151,155,159,163,167,171,175
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

3.4 数据库配置选项参数

[mysqld]
skip-networking
lower_case_table_names =1
character-set-server = UTF8MB4
skip_name_resolve =1
default_time_zone ="+8:00"

#performance setttings
lock_wait_timeout =3600
open_files_limit =65535
back_log =1024
max_connections =1024
max_connect_errors =1000000
table_open_cache =1024
table_definition_cache =1024
thread_stack =512K
sort_buffer_size =4M
join_buffer_size =4M
read_buffer_size =8M
read_rnd_buffer_size =4M
bulk_insert_buffer_size =64M
thread_cache_size =768
interactive_timeout =600
wait_timeout =600
tmp_table_size =32M
max_heap_table_size =32M

#log settings
log_timestamps = SYSTEM
log_error = error.log
log_error_verbosity =3
slow_query_log =1
log_slow_extra =1
#log_slow_verbosity = FULL
slow_query_log_file = slow.log
long_query_time =0.01
log_queries_not_using_indexes =1
log_throttle_queries_not_using_indexes =60
min_examined_row_limit =0
log_slow_admin_statements =1
log_slow_slave_statements =1
log_bin = binlog

binlog_format = ROW
sync_binlog =1
binlog_cache_size =4M
max_binlog_cache_size =2G
max_binlog_size =1G
binlog_rows_query_log_events =1
binlog_expire_logs_seconds =604800
#binlog_expire_logs_auto_purge =1
binlog_checksum = CRC32
gtid_mode =ON
enforce_gtid_consistency =TRUE

#myisam settings
key_buffer_size =32M
myisam_sort_buffer_size =128M

#replication settings
#master_info_repository =TABLE
#relay_log_info_repository =TABLE
relay_log_recovery =1
slave_parallel_type = LOGICAL_CLOCK
slave_parallel_workers =2
binlog_transaction_dependency_tracking = WRITESET
slave_preserve_commit_order =1
slave_checkpoint_period =2

#innodb settings
transaction_isolation = REPEATABLE-READ
innodb_buffer_pool_size =2G
innodb_buffer_pool_instances =8
innodb_data_file_path = ibdata1:12M:autoextend
innodb_flush_log_at_trx_commit =1
innodb_log_buffer_size =32M
innodb_log_file_size =2G
innodb_log_files_in_group =3
innodb_doublewrite_files =2
innodb_max_undo_log_size =4G
innodb_io_capacity =400000
innodb_io_capacity_max =800000
innodb_open_files =65534
#本次测试采用O_DIRECT_NO_FSYNC模式
innodb_flush_method = O_DIRECT_NO_FSYNC
innodb_lru_scan_depth =4000
innodb_lock_wait_timeout =10
innodb_rollback_on_timeout =1
innodb_print_all_deadlocks =1
innodb_online_alter_log_max_size =4G
innodb_print_ddl_logs =0
innodb_status_file =1
innodb_status_output =0
innodb_status_output_locks =1
innodb_sort_buffer_size =67108864
#innodb_thread_concurrency =176
#innodb_spin_wait_delay =3
#innodb_sync_spin_loops =10

#innodb monitor settings
innodb_monitor_enable ="module_innodb"
innodb_monitor_enable ="module_server"
innodb_monitor_enable ="module_dml"
innodb_monitor_enable ="module_ddl"
innodb_monitor_enable ="module_trx"
innodb_monitor_enable ="module_os"
innodb_monitor_enable ="module_purge"
innodb_monitor_enable ="module_log"
innodb_monitor_enable ="module_lock"
innodb_monitor_enable ="module_buffer"
innodb_monitor_enable ="module_index"
innodb_monitor_enable ="module_ibuf_system"
innodb_monitor_enable ="module_buffer_page"
innodb_monitor_enable ="module_adaptive_hash"

#pfs settings
performance_schema =1
#performance_schema_instrument ='%memory%=on'
performance_schema_instrument ='%lock%=on'

#thread pool,需要开启thread pool时才取消下面两行注释
#thread_handling ='pool-of-thread'
#thread_pool_stall_limit =50

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/240383.html<

(0)
运维的头像运维
上一篇2025-04-23 20:32
下一篇 2025-04-23 20:33

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注