解析SparkStreaming和Kafka集成的两种方式

解析SparkStreaming和Kafka集成的两种方式

作者:开源大数据EMR 2020-02-21 17:33:17

大数据

Kafka

Spark Spark Streaming是基于微批处理的流式计算引擎,通常是利用Spark Core或者Spark Core与Spark Sql一起来处理数据。在企业实时处理架构中,通常将Spark Streaming和Kafka集成作为整个大数据处理架构的核心环节之一。

Spark Streaming是基于微批处理的流式计算引擎,通常是利用Spark Core或者Spark Core与Spark Sql一起来处理数据。在企业实时处理架构中,通常将Spark Streaming和Kafka集成作为整个大数据处理架构的核心环节之一。

针对不同的Spark、Kafka版本,集成处理数据的方式分为两种:Receiver based Approach和Direct Approach,不同集成版本处理方式的支持,可参考下图:

Receiver based Approach

基于receiver的方式是使用kafka消费者高阶API实现的。

对于所有的receiver,它通过kafka接收的数据会被存储于spark的executors上,底层是写入BlockManager中,默认200ms生成一个block(通过配置参数spark.streaming.blockInterval决定)。然后由spark streaming提交的job构建BlockRdd,最终以spark core任务的形式运行。

关于receiver方式,有以下几点需要注意:

  • receiver作为一个常驻线程调度到executor上运行,占用一个cpu
  • receiver个数由KafkaUtils.createStream调用次数决定,一次一个receiver
  • kafka中的topic分区并不能关联产生在spark streaming中的rdd分区
  • 增加在KafkaUtils.createStream()中的指定的topic分区数,仅仅增加了单个receiver消费的topic的线程数,它不会增加处理数据中的并行的spark的数量【topicMap[topic,num_threads]map的value对应的数值是每个topic对应的消费线程数】
  • receiver默认200ms生成一个block,建议根据数据量大小调整block生成周期。
  • receiver接收的数据会放入到BlockManager,每个executor都会有一个BlockManager实例,由于数据本地性,那些存在receiver的executor会被调度执行更多的task,就会导致某些executor比较空闲

建议通过参数spark.locality.wait调整数据本地性。该参数设置的不合理,比如设置为10而任务2s就处理结束,就会导致越来越多的任务调度到数据存在的executor上执行,导致任务执行缓慢甚至失败(要和数据倾斜区分开)

多个kafka输入的DStreams可以使用不同的groups、topics创建,使用多个receivers接收处理数据

两种receiver可靠的receiver:

  • 可靠的receiver在接收到数据并通过复制机制存储在spark中时准确的向可靠的数据源发送ack确认不可靠的receiver:
  • 不可靠的receiver不会向数据源发送数据已接收确认。 这适用于用于不支持ack的数据源当然,我们也可以自定义receiver。
  • receiver处理数据可靠性默认情况下,receiver是可能丢失数据的。
  • 可以通过设置spark.streaming.receiver.writeAheadLog.enable为true开启预写日志机制,将数据先写入一个可靠地分布式文件系统如hdfs,确保数据不丢失,但会失去一定性能

限制消费者消费的最大速率涉及三个参数:

  • spark.streaming.backpressure.enabled:默认是false,设置为true,就开启了背压机制;
  • spark.streaming.backpressure.initialRate:默认没设置初始消费速率,第一次启动时每个receiver接收数据的最大值;
  • spark.streaming.receiver.maxRate:默认值没设置,每个receiver接收数据的最大速率(每秒记录数)。每个流每秒最多将消费此数量的记录,将此配置设置为0或负数将不会对最大速率进行限制

在产生job时,会将当前job有效范围内的所有block组成一个BlockRDD,一个block对应一个分区

kafka082版本消费者高阶API中,有分组的概念,建议使消费者组内的线程数(消费者个数)和kafka分区数保持一致。如果多于分区数,会有部分消费者处于空闲状态

Direct Approach

direct approach是spark streaming不使用receiver集成kafka的方式,一般在企业生产环境中使用较多。相较于receiver,有以下特点:

1.不使用receiver

不需要创建多个kafka streams并聚合它们

减少不必要的CPU占用

减少了receiver接收数据写入BlockManager,然后运行时再通过blockId、网络传输、磁盘读取等来获取数据的整个过程,提升了效率

无需wal,进一步减少磁盘IO操作

2.direct方式生的rdd是KafkaRDD,它的分区数与kafka分区数保持一致一样多的rdd分区来消费,更方便我们对并行度进行控制

注意:在shuffle或者repartition操作后生成的rdd,这种对应关系会失效

3.可以手动维护offset,实现exactly once语义

4.数据本地性问题。在KafkaRDD在compute函数中,使用SimpleConsumer根据指定的topic、分区、offset去读取kafka数据。

但在010版本后,又存在假如kafka和spark处于同一集群存在数据本地性的问题

5.限制消费者消费的最大速率

spark.streaming.kafka.maxRatePerPartition:从每个kafka分区读取数据的最大速率(每秒记录数)。这是针对每个分区进行限速,需要事先知道kafka分区数,来评估系统的吞吐量。

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/246690.html<

(0)
运维的头像运维
上一篇2025-04-26 18:41
下一篇 2025-04-26 18:42

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注