分布式锁是一种用于保证分布式系统中多个进程或线程同步访问共享资源的技术。同时它又是面试中的常见问题,所以我们本文就重点来看分布式锁的具体实现(含实现代码)。
在分布式系统中,由于各个节点之间的网络通信延迟、故障等原因,可能会导致数据不一致的问题。分布式锁通过协调多个节点的行为,保证在任何时刻只有一个节点可以访问共享资源,以避免数据的不一致性和冲突。
1、分布式锁要求
分布式锁通常需要满足以下几个要求:
- 互斥性:在任意时刻只能有一个客户端持有锁。
- 不会发生死锁:即使持有锁的客户端发生故障,也能保证锁最终会被释放。
- 具有容错性:分布式锁需要能够容忍节点故障等异常情况,保证系统的稳定性。
2、实现方案
在 Java 中,实现分布式锁的方案有多种,包括:
- 基于数据库实现的分布式锁:可以通过数据库的乐观锁或悲观锁实现分布式锁,但是由于数据库的 IO 操作比较慢,不适合高并发场景。
- 基于 ZooKeeper 实现的分布式锁:ZooKeeper 是一个高可用性的分布式协调服务,可以通过它来实现分布式锁。但是使用 ZooKeeper 需要部署额外的服务,增加了系统复杂度。
- 基于 Redis 实现的分布式锁:Redis 是一个高性能的内存数据库,支持分布式部署,可以通过Redis的原子操作实现分布式锁,而且具有高性能和高可用性。
3、数据库分布式锁
数据库的乐观锁或悲观锁都可以实现分布式锁,下面分别来看。
(1)悲观锁
在数据库中使用 for update 关键字可以实现悲观锁,我们在 Mapper 中添加 for update 即可对数据加锁,实现代码如下:
<!-- UserMapper.xml -->
<select>“强一致性是指系统中的所有节点在任何时刻看到的数据都是一致的。ZooKeeper 中的数据是有序的树形结构,每个节点都有唯一的路径标识符,所有节点都共享同一份数据,当任何一个节点对数据进行修改时,所有节点都会收到通知,更新数据,并确保数据的一致性。在 ZooKeeper 中,强一致性体现在数据的读写操作上。ZooKeeper 使用 ZAB(ZooKeeper Atomic Broadcast)协议来保证数据的一致性,该协议确保了数据更新的顺序,所有的数据更新都需要经过集群中的大多数节点确认,保证了数据的一致性和可靠性。”
小结
在 Java 中,使用数据库、ZooKeeper 和 Redis 都可以实现分布式锁。但数据库 IO 操作比较慢,不适合高并发场景;Redis 执行效率最高,但在主从切换时,可能会出现锁丢失的情况;ZooKeeper 是一个高可用性的分布式协调服务,可以保证数据的强一致性,但是使用 ZooKeeper 需要部署额外的服务,增加了系统复杂度。所以没有最好的解决方案,只有最合适自己的解决方案。
文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/250377.html<

