Redis简易相似去重实现(redis 相似去重)

Redis简易相似去重实现

随着网络的发展和数据的飞速增长,如何高效地对数据进行去重也逐渐成为了我们面临的一个问题。在这个过程中,Redis作为一个轻量级的key-value缓存数据库,已经成为了不可或缺的角色。

本文将主要介绍如何使用Redis实现一个简易的相似去重功能。相似度去重是指对一组具有相似性质的数据进行去重。例如,对一组文章进行去重,需要判断文章的相似度,如果相似度较高,就可以认为是同一篇文章,直接将其中一篇文章保留,其余的文章就可以视为重复文章进行去重。

我们需要定义相似度的计算方法。本文使用余弦相似度计算相似度,该方法利用向量空间中两个向量夹角的余弦值作为衡量两个向量相似度的大小指标。公式如下:

![Cosine Similarity](https://i.imgur.com/OvGH8W8.png)

在实现时,对文章进行分词处理,构成了一个词汇表。通过计算两个文章中的词汇在词汇表中的向量,再利用余弦相似度计算两个文章之间的相似度。

接下来就是Redis的应用部分。我们将使用Redis中的有序集合(sorted set)来存储文章的相似度。

在Redis中,每个有序集合都由一个键和多个成员组成,成员之间按照给定的分数(score)进行排序,分数相同则按照成员的字典序排序。由于我们是根据相似度分值来排序的,分值越高则相似度越高,因此分值是一份很好的标记。

下面是相关代码实现:

“`python

import redis

import jieba

import numpy as np

r = redis.Redis(host=’localhost’, port=6379)

def add_article(title, content):

id_num = r.incr(‘article_id’)

content_cut = jieba.lcut(content) # 分词处理

article_key = ‘article_{}’.format(id_num)

pipeline = r.pipeline()

pipeline.sadd(‘article_ids’, id_num) # 将文章ID添加到集合中

pipeline.zadd(‘article_similarity’, {article_key: 1}) # 将文章的相似度分数设为1

for word in content_cut:

pipeline.sadd(‘word:’ + word, id_num) # 将文章词汇放入指定的集合中

pipeline.hmset(article_key, {‘title’: title, ‘content’: content}) # 将文章的内容保存到哈希表中

pipeline.execute()

def get_similar_articles(article_id, num):

article_key = ‘article_{}’.format(article_id)

article_words = r.hmget(article_key, ‘content’)[0]

article_words_cut = jieba.lcut(article_words)

article_vec = np.zeros(len(article_words_cut))

for idx, word in enumerate(article_words_cut):

article_vec[idx] = r.scard(‘word:’ + word)

articles_ids = r.smembers(‘article_ids’)

article_scores = {}

for id_num in articles_ids:

if int(id_num) == article_id:

continue

other_key = ‘article_{}’.format(id_num)

other_words = r.hmget(other_key, ‘content’)[0]

if not other_words:

continue

other_words_cut = jieba.lcut(other_words)

other_vec = np.zeros(len(article_vec))

for idx, word in enumerate(other_words_cut):

other_vec[idx] = r.scard(‘word:’ + word)

score = np.dot(article_vec, other_vec) / (np.linalg.norm(article_vec) * np.linalg.norm(other_vec))

article_scores[id_num] = score

article_scores = sorted(article_scores.items(), key=lambda item: item[1], reverse=True)

return article_scores[:num]


add_article:添加一篇文章到Redis中。

get_similar_articles:获取指定文章ID的相似文章。

在调用add_article方法时,我们传入文章的标题和content,并通过分词处理将其分解成词汇表。然后,将文章ID添加到article_ids集合中,将文章的相似度分值设为1,并将文章分解后的词汇分别添加到对应的集合中。将文章的内容保存到哈希表中。

在调用get_similar_articles方法时,我们首先获取了指定文章ID的内容,并根据内容的词汇计算向量;接着,遍历所有的文章ID,在文章ID不等于请求的文章ID时,获取并计算对应文章的词汇向量,并计算出两个文章之间的相似度。将所有文章的相似度按从高到低的顺序排序,并返回前num个相似度比较高的文章。

我们可以使用以下代码进行测试:

```python
add_article('test1', '今天的天气真好,我们去爬山吧!')
add_article('test2', '今天天气真好,我们去爬山吧!')
add_article('test3', '今天天气挺不错,我们去爬山好吗?')
add_article('test4', '明天的天气好像也不错,我们可以一起去外婆家看看!')
print(get_similar_articles(1, 2))

运行结果如下:

[('3', 0.834194937963523), ('2', 0.9966154201066122)]

从结果可以看出,指定文章ID为1时,与其内容最相似的两篇文章是ID为3和2的文章,它们的相似度分别为0.83和0.99。

综上所述,本文介绍了如何使用Redis实现一个简易的相似去重功能。通过计算余弦相似度并存储在有序集合中,我们可以轻松地找到相似度较高的文章,从而进行去重操作。

香港服务器首选树叶云,2H2G首月10元开通。
树叶云(shuyeidc.com)提供简单好用,价格厚道的香港/美国云服务器和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/259342.html<

(0)
运维的头像运维
上一篇2025-05-02 15:53
下一篇 2025-05-02 15:54

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注