后浪云AI教程:AI人工智能 数据预处理技术

下面介绍数据预处理技术 –

二值化

这是当需要将数值转换为布尔值时使用的预处理技术。我们可以用一种内置的方法来二值化输入数据,比如说用0.5作为阈值,方法如下 –

data_binarized = preprocessing.Binarizer(threshold = 0.5).transform(input_data)
print("\nBinarized data:\n", data_binarized)

现在,运行上面的代码后,将得到以下输出,所有高于0.5(阈值)的值将被转换为1,并且所有低于0.5的值将被转换为0

二值化数据

[[ 1. 0. 1.]
[ 0. 1. 1.]
[ 0. 0. 1.]
[ 1. 1. 0.]]

平均去除

这是机器学习中使用的另一种非常常见的预处理技术。 基本上它用于消除特征向量的均值,以便每个特征都以零为中心。 还可以消除特征向量中的特征偏差。 为了对样本数据应用平均去除预处理技术,可以编写如下Python代码。 代码将显示输入数据的平均值和标准偏差 –

print("Mean = ", input_data.mean(axis = 0))
print("Std deviation = ", input_data.std(axis = 0))

运行上述代码行后,将得到以下输出 –

Mean = [ 1.75       -1.275       2.2]
Std deviation = [ 2.71431391  4.20022321  4.69414529]

现在,下面的代码将删除输入数据的平均值和标准偏差 –

data_scaled = preprocessing.scale(input_data)
print("Mean =", data_scaled.mean(axis=0))
print("Std deviation =", data_scaled.std(axis = 0))

运行上述代码行后,将得到以下输出 –

Mean = [ 1.11022302e-16 0.00000000e+00 0.00000000e+00]
Std deviation = [ 1.             1.             1.]

缩放

这是另一种数据预处理技术,用于缩放特征向量。 特征向量的缩放是需要的,因为每个特征的值可以在许多随机值之间变化。 换句话说,我们可以说缩放非常重要,因为我们不希望任何特征合成为大或小。 借助以下Python代码,我们可以对输入数据进行缩放,即特征矢量 –

最小最大缩放

data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0,1))
data_scaled_minmax = data_scaler_minmax.fit_transform(input_data)
print ("\nMin max scaled data:\n", data_scaled_minmax)

运行上述代码行后,将得到以下输出 –

[ [ 0.48648649  0.58252427   0.99122807]
[   0.          1.           0.81578947]
[   0.27027027  0.           1.        ]
[   1.          0. 99029126  0.        ]]

正常化

这是另一种数据预处理技术,用于修改特征向量。 这种修改对于在一个普通的尺度上测量特征向量是必要的。 以下是可用于机器学习的两种标准化 –

L1 标准化

它也被称为最小绝对偏差。 这种标准化会修改这些值,以便绝对值的总和在每行中总是最多为 1。 它可以在以下 Python 代码,使用上面的输入数据来实现 –

## Normalize data
data_normalized_l1 = preprocessing.normalize(input_data, norm = 'l1')
print("\nL1 normalized data:\n", data_normalized_l1)
Python

上面的代码行生成以下输出:

L1 normalized data:
[[ 0.22105263  -0.2          0.57894737]
[ -0.2027027    0.32432432   0.47297297]
[  0.03571429  -0.56428571   0.4       ]
[  0.42142857   0.16428571  -0.41428571]]

L2 标准化

它也被称为最小二乘。这种归正常化修改了这些值,以便每一行中的平方和总是最多为 1。它可以在以下 Python 代码,使用上面的输入数据来实现 –

## Normalize data
data_normalized_l2 = preprocessing.normalize(input_data, norm = 'l2')
print("\nL2 normalized data:\n", data_normalized_l2)
Python

执行以上代码行将生成以下输出 –

L2 normalized data:
[[ 0.33946114  -0.30713151   0.88906489]
[ -0.33325106   0.53320169   0.7775858 ]
[  0.05156558  -0.81473612   0.57753446]
[  0.68706914   0.26784051  -0.6754239 ]]

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/278665.html<

(0)
运维的头像运维
上一篇2025-05-11 16:53
下一篇 2025-05-11 16:55

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注