后浪云Apache Kafka教程:Apache Kafka 整合 Storm

在本章中,我们将学习如何将Kafka与Apache Storm集成。

关于Storm

Storm最初由Nathan Marz和BackType的团队创建。在短时间内,Apache Storm成为分布式实时处理系统的标准,允许您处理大量数据。Storm是非常快的,并且一个基准时钟为每个节点每秒处理超过一百万个元组。Apache Storm持续运行,从配置的源(Spouts)消耗数据,并将数据传递到处理管道(Bolts)。联合,Spouts和Bolt构成一个拓扑。

与Storm集成

Kafka和Storm自然互补,它们强大的合作能够实现快速移动的大数据的实时流分析。Kafka和Storm集成是为了使开发人员更容易地从Storm拓扑获取和发布数据流。

概念流

Spouts是流的源。例如,一个喷头可以从Kafka Topic读取元组并将它们作为流发送。Bolt消耗输入流,处理并可能发射新的流。Bolt可以从运行函数,过滤元组,执行流聚合,流连接,与数据库交谈等等做任何事情。Storm拓扑中的每个节点并行执行。拓扑无限运行,直到终止它。Storm将自动重新分配任何失败的任务。此外,Storm保证没有数据丢失,即使机器停机和消息被丢弃。

让我们详细了解Kafka-Storm集成API。有三个主要类集成Kafka与Storm。他们如下 –

BrokerHosts – ZkHosts & StaticHosts

BrokerHosts是一个接口,ZkHosts和StaticHosts是它的两个主要实现。ZkHosts用于通过在ZooKeeper中维护细节来动态跟踪Kafka代理,而StaticHosts用于手动/静态设置Kafka代理及其详细信息。ZkHosts是访问Kafka代理的简单快捷的方式。

ZkHosts的签名如下 –

public ZkHosts(String brokerZkStr, String brokerZkPath)
public ZkHosts(String brokerZkStr)

其中brokerZkStr是ZooKeeper主机,brokerZkPath是ZooKeeper路径以维护Kafka代理详细信息。

KafkaConfig API

此API用于定义Kafka集群的配置设置。Kafka Con-fig的签名定义如下

public KafkaConfig(BrokerHosts hosts, string topic)

    主机 – BrokerHosts可以是ZkHosts / StaticHosts。

    主题 – 主题名称。

SpoutConfig API

Spoutconfig是KafkaConfig的扩展,支持额外的ZooKeeper信息。

public SpoutConfig(BrokerHosts hosts, string topic, string zkRoot, string id)
  • 主机 – BrokerHosts可以是BrokerHosts接口的任何实现

  • 主题 – 主题名称。

  • zkRoot – ZooKeeper根路径。

  • id – spouts存储在Zookeeper中消耗的偏移量的状态。ID应该唯一标识您的喷嘴。

SchemeAsMultiScheme

SchemeAsMultiScheme是一个接口,用于指示如何将从Kafka中消耗的ByteBuffer转换为风暴元组。它源自MultiScheme并接受Scheme类的实现。有很多Scheme类的实现,一个这样的实现是StringScheme,它将字节解析为一个简单的字符串。它还控制输出字段的命名。签名定义如下。

public SchemeAsMultiScheme(Scheme scheme)
  • 方案 – 从kafka消耗的字节缓冲区。

KafkaSpout API

KafkaSpout是我们的spout实现,它将与Storm集成。它从kafka主题获取消息,并将其作为元组发送到Storm生态系统。KafkaSpout从SpoutConfig获取其配置详细信息。

下面是一个创建一个简单的Kafka喷水嘴的示例代码。

// ZooKeeper connection string
BrokerHosts hosts = new ZkHosts(zkConnString);

//Creating SpoutConfig Object
SpoutConfig spoutConfig = new SpoutConfig(hosts, 
   topicName, "/" + topicName UUID.randomUUID().toString());

//convert the ByteBuffer to String.
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());

//Assign SpoutConfig to KafkaSpout.
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

创建Bolt

Bolt是一个使用元组作为输入,处理元组,并产生新的元组作为输出的组件。Bolt将实现IRichBolt接口。在此程序中,使用两个Bolt类WordSplitter-Bolt和WordCounterBolt来执行操作。

IRichBolt接口有以下方法 –

  • 准备 – 为Bolt提供要执行的环境。执行器将运行此方法来初始化喷头。

  • 执行 – 处理单个元组的输入。

  • 清理 – 当Bolt要关闭时调用。

  • declareOutputFields – 声明元组的输出模式。

让我们创建SplitBolt.java,它实现逻辑分割一个句子到词和CountBolt.java,它实现逻辑分离独特的单词和计数其出现。

SplitBolt.java

import java.util.Map;

import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;

import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;

public class SplitBolt implements IRichBolt {
   private OutputCollector collector;
   
   @Override
   public void prepare(Map stormConf, TopologyContext context,
      OutputCollector collector) {
      this.collector = collector;
   }
   
   @Override
   public void execute(Tuple input) {
      String sentence = input.getString(0);
      String[] words = sentence.split(" ");
      
      for(String word: words) {
         word = word.trim();
         
         if(!word.isEmpty()) {
            word = word.toLowerCase();
            collector.emit(new Values(word));
         }
         
      }

      collector.ack(input);
   }
   
   @Override
   public void declareOutputFields(OutputFieldsDeclarer declarer) {
      declarer.declare(new Fields("word"));
   }

   @Override
   public void cleanup() {}
   
   @Override
   public Map<String, Object> getComponentConfiguration() {
      return null;
   }
   
}

CountBolt.java

import java.util.Map;
import java.util.HashMap;

import backtype.storm.tuple.Tuple;
import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;

public class CountBolt implements IRichBolt{
   Map<String, Integer> counters;
   private OutputCollector collector;
   
   @Override
   public void prepare(Map stormConf, TopologyContext context,
   OutputCollector collector) {
      this.counters = new HashMap<String, Integer>();
      this.collector = collector;
   }

   @Override
   public void execute(Tuple input) {
      String str = input.getString(0);
      
      if(!counters.containsKey(str)){
         counters.put(str, 1);
      }else {
         Integer c = counters.get(str) +1;
         counters.put(str, c);
      }
   
      collector.ack(input);
   }

   @Override
   public void cleanup() {
      for(Map.Entry<String, Integer> entry:counters.entrySet()){
         System.out.println(entry.getKey()&plus;" : " &plus; entry.getValue());
      }
   }

   @Override
   public void declareOutputFields(OutputFieldsDeclarer declarer) {
   
   }

   @Override
   public Map<String, Object> getComponentConfiguration() {
      return null;
   }
}

提交拓扑

Storm拓扑基本上是一个Thrift结构。TopologyBuilder类提供了简单而容易的方法来创建复杂的拓扑。TopologyBuilder类具有设置spout(setSpout)和设置bolt(setBolt)的方法。最后,TopologyBuilder有createTopology来创建to-pology。shuffleGrouping和fieldsGrouping方法有助于为喷头和Bolt设置流分组。

本地集群 – 为了开发目的,我们可以使用 LocalCluster 对象创建本地集群,然后使用 LocalCluster的 submitTopology 类。

KafkaStormSample.java

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;

import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

import backtype.storm.spout.SchemeAsMultiScheme;
import storm.kafka.trident.GlobalPartitionInformation;
import storm.kafka.ZkHosts;
import storm.kafka.Broker;
import storm.kafka.StaticHosts;
import storm.kafka.BrokerHosts;
import storm.kafka.SpoutConfig;
import storm.kafka.KafkaConfig;
import storm.kafka.KafkaSpout;
import storm.kafka.StringScheme;

public class KafkaStormSample {
   public static void main(String[] args) throws Exception{
      Config config = new Config();
      config.setDebug(true);
      config.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
      String zkConnString = "localhost:2181";
      String topic = "my-first-topic";
      BrokerHosts hosts = new ZkHosts(zkConnString);
      
      SpoutConfig kafkaSpoutConfig = new SpoutConfig (hosts, topic, "/" + topic,    
         UUID.randomUUID().toString());
      kafkaSpoutConfig.bufferSizeBytes = 1024 * 1024 * 4;
      kafkaSpoutConfig.fetchSizeBytes = 1024 * 1024 * 4;
      kafkaSpoutConfig.forceFromStart = true;
      kafkaSpoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());

      TopologyBuilder builder = new TopologyBuilder();
      builder.setSpout("kafka-spout", new KafkaSpout(kafkaSpoutCon-fig));
      builder.setBolt("word-spitter", new SplitBolt()).shuffleGroup-ing("kafka-spout");
      builder.setBolt("word-counter", new CountBolt()).shuffleGroup-ing("word-spitter");
         
      LocalCluster cluster = new LocalCluster();
      cluster.submitTopology("KafkaStormSample", config, builder.create-Topology());

      Thread.sleep(10000);
      
      cluster.shutdown();
   }
}

在移动编译之前,Kakfa-Storm集成需要策展人ZooKeeper客户端java库。策展人版本2.9.1支持Apache Storm 0.9.5版(我们在本教程中使用)。下载下面指定的jar文件并将其放在java类路径中。

  • curator-client-2.9.1.jar
  • curator-framework-2.9.1.jar

在包括依赖文件之后,使用以下命令编译程序,

javac -cp "/path/to/Kafka/apache-storm-0.9.5/lib/*" *.java

执行

启动Kafka Producer CLI(在上一章节中解释),创建一个名为 my-first-topic 的新主题,并提供一些样本消息,如下所示 –

hello
kafka
storm
spark
test message
another test message

现在使用以下命令执行应用程序 –

java -cp “/path/to/Kafka/apache-storm-0.9.5/lib/*":. KafkaStormSample

此应用程序的示例输出如下所示 –

storm : 1
test : 2
spark : 1
another : 1
kafka : 1
hello : 1
message : 2

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/287179.html<

(0)
运维的头像运维
上一篇2025-05-15 18:06
下一篇 2025-05-15 18:07

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注