解决Redis缓存穿透血崩抓住关键(redis 缓存穿透血崩)

Redis缓存穿透和缓存血崩是常见的缓存问题,它们会影响应用的性能和稳定性。在本文中,我们将介绍如何解决这些问题,并提供一些代码示例以供参考。

1. Redis缓存穿透

Redis缓存穿透指的是当请求中的键不存在于缓存中时,Redis将无法为其提供数据,并且由于这种情况的高发性,错误请求可能会导致Redis Server负载过重,甚至严重影响应用程序的性能和可扩展性。

要解决此问题,我们可以使用两种不同的方法:一种是在Redis中设置一个空值(Null or Empty Key)作为缓存占位符,另一种是使用布隆过滤器(Bloom Filter)过滤查询请求。

1.1 设置空值占位符

在Redis中设置空值占位符有助于减少大量无效的查询请求,从而减轻了Redis Server的负载。我们可以一个过期的空值缓存来作为占位符,例如:

“` redis

SET null:key “” EX 60


其中,EX参数是过期时间(60秒),当请求的键不存在于Redis中时,将向其返回空值占位符,这将导致应用程序处理流程跳过缓存查询。当Redis Server被真正的请求填充时,占位符将被自动替换。

1.2 Bloom Filter过滤请求

Bloom Filter是一种数据结构,它能够快速判断一个元素是否可能存在于数据集中,而无需实际查询。在Redis缓存中,我们可以使用Bloom Filter来过滤掉一些明显无效的查询请求,从而减轻了Redis的压力。以下是一个Bloom Filter示例:

``` python
import redis
import math
import hashlib
class BloomFilter:
def __init__(self, host, port, db, size, hash_count):
self.r = redis.StrictRedis(host=host, port=port, db=db)
self.bit_size = size
self.hash_count = hash_count
self.byte_size = int(math.ceil(size / 8))
self.hash_functions = [
hashlib.md5,
hashlib.sha1,
hashlib.sha3_256,
]
self.bloom_key = "bloom"
def add(self, key):
for h in self.hash_functions:
digest = h(key.encode()).digest()
for i in range(self.hash_count):
bit = (int.from_bytes(digest[i:i+4], byteorder='big') % self.bit_size)
self.r.setbit(self.bloom_key, bit, 1)
def exists(self, key):
for h in self.hash_functions:
digest = h(key.encode()).digest()
for i in range(self.hash_count):
bit = (int.from_bytes(digest[i:i+4], byteorder='big') % self.bit_size)
if not self.r.getbit(self.bloom_key, bit):
return False
return True
```

以上代码演示了如何使用Redis和Python实现一个Bloom Filter,它将一个键映射为多个不同的位,这可以减轻Redis负载,因为如果Redis中不存在该键,则Bloom Filter将判断该键不存在于缓存中,并跳过查询。

2. Redis缓存血崩

Redis缓存血崩是一个相对严重的缓存问题,它在应用程序重新启动或缓存可能过度装载时可能会发生。在这种情况下,Redis Server将无法为请求提供有效响应,因为它会被过载或崩溃。

要解决Redis缓存血崩问题,我们可以使用以下方法:

2.1 设置缓存过期时间(TTL)

设置缓存数据的过期时间可以帮助确保数据将在一段时间后过期并被清除,从而为新的请求释放内存。我们可以在Redis Server端设置一个全局缓存过期时间,例如:

``` redis
redis_conn.set('my_key', 'my_value', ex=300)

其中,ex参数是过期时间(300秒)。

2.2 设置缓存自动更新

在应用程序更新缓存时,我们可以使用自动更新来避免Redis缓存血崩问题。例如,我们可以将缓存值存储为对象,并设置一个定时器,以确保每隔一段时间更新一次缓存。以下是一个自动更新示例:

“` python

import threading

import redis

redis_conn = redis.StrictRedis(host=’localhost’, port=6379, db=0)

class AutoUpdater:

def __init__(self):

self.interval = 60 # 60 seconds

self.cache = {}

def start(self):

self.update()

threading.Timer(self.interval, self.start).start()

def update(self):

# fetch data from DB

data = {“key1”: “value1”, “key2”: “value2”}

self.cache = data

# update cache

redis_conn.set(“my_cache”, repr(data), ex=self.interval)

# Start AutoUpdater

AutoUpdater().start()


在以上示例中,我们设置了一个定时器,使缓存每隔60秒自动更新。该应用程序将使用repr()函数将缓存数据序列化为字符串,以便在缓存中存储。

结论

在本文中,我们介绍了如何解决Redis缓存穿透和血崩问题。我们讨论了如何使用空值占位符、Bloom Filter、TTL和自动更新来优化Redis缓存并减轻Redis Server的负载。当处理高负载应用程序时,这些技巧可以提高应用程序的性能和可扩展性。

香港服务器首选树叶云,2H2G首月10元开通。
树叶云(www.IDC.Net)提供简单好用,价格厚道的香港/美国云服务器和独立服务器。IDC+ISP+ICP资质。ARIN和APNIC会员。成熟技术团队15年行业经验。

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/301341.html<

(0)
运维的头像运维
上一篇2025-05-24 07:09
下一篇 2025-05-24 07:11

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注