快速上手微软MMdnn

MMdnn 是微软开源的一套帮助用户在不同深度学习框架之间进行互操作的工具,包括模型转换和可视化。目前支持在 Caffe、Keras、MXNet、Tensorflow、CNTK、PyTorch 和 CoreML 等框架之间进行模型转换。

安装

通过以下命令行获取稳定版的 MMdnn:

pip install https://github.com/Microsoft/MMdnn/releases/download/0.1.3/mmdnn-0.1.3-py2.py3-none-any.whl

或者通过以下命令尝试最新版本:

pip install -U git+https://github.com/Microsoft/MMdnn.git@master

模型转换

业界和学界存在大量现有框架,适合开发者和研究者来设计模型,每个框架具备自己的网络结构定义和模型保存格式。框架之间的差距阻碍了模型的交互操作。

我们提供一个模型转换器,帮助开发者通过中间表征格式转换模型,以适合不同框架。

支持框架

每个支持的框架都有详细的 README 文档,它们可以在以下conversion件夹找到。

地址:https://github.com/Microsoft/MMdnn/tree/master/mmdnn/conversion Caffe Keras MXNet TensorFlow(实验阶段,强烈建议先阅读 README) Microsoft Cognitive Toolkit (CNTK) PyTorch CoreML(实验阶段)

测试模型

我们在部分 ImageNet 模型上对当前支持的框架间模型转换功能进行了测试。

正在测试的框架: PyTorch CNTK Caffe2 ONNX 正在测试的模型: RNN 图像风格迁移 目标检测

模型可视化

你可以使用 MMdnn 模型可视化工具(http://vis.mmdnn.com/),提交自己的 IR json 文件进行模型可视化。为了运行下面的命令行,你需要使用喜欢的包管理器安装 requests、Keras、TensorFlow。

使用 Keras inception_v3 模型作为示例。

\1. 下载预训练模型:

python -m mmdnn.conversion.examples.keras.extract_model -n inception_v3

\2. 将预训练模型文件转换成中间表征格式:

python3 -m mmdnn.conversion._.convertToIR -f keras -d keras_inception_v3 -n imagenet_inception_v3.json

\3. 打开 MMdnn 模型可视化工具地址(http://mmdnn.eastasia.cloudapp.azure.com:8080/),选择文件 keras_inception_v3.json。

社区支持

本项目仍在继续开发与探索,它需要各位读者完善中间表征与支持的框架。因此,该项目的作者表示他非常希望有开发者能提供新的运算或扩展。

中间表征:中间表征在 protobuf 二进制文件中储存网络架构,在 NumPynative 格式中储存预训练权重。此外,目前 IR 权重数据使用的是 NHWC 格式。中间表征的细节请查看 ops.txt 和 graph.proto 文件。 框架:我们正在扩展到其它框架版本和可视化工具,例如 Caffe2、PyTorch 和 CoreML 等。此外,本项目也在积极开发 RNN 相关的操作方法。

使用案例

以下是该项目实现框架转换的基本案例,其中包括官方的教程和用户提供的各种案例,机器之心简要介绍了官方 Keras 到 CNTK 的转换教程。 官方教程:

Keras “inception_v3” to CNTK 用户案例:

MXNet “resnet 152 11k” to PyTorch MXNet “resnext” to Keras Tensorflow “resnet 101” to PyTorch Tensorflow “mnist mlp model” to CNTK Tensorflow “Inception_v3” to MXNet Caffe “AlexNet” to Tensorflow Caffe “inception_v4” to Tensorflow Caffe “VGG16_SOD” to Tensorflow Caffe “Squeezenet v1.1” to CNTK

Keras「inception_v3」模型到 CNTK 的转换

1. 安装 Keras 和 CNTK

pip install keras
pip install https://cntk.ai/PythonWheel/CPU-Only/cntk-2.3-cp27-cp27mu-linux_x86_64.whl

or

pip install
https://cntk.ai/PythonWheel/CPU-Only/cntk-2.3-cp35-cp35m-linux_x86_64.whl

2. 准备 Keras 模型

以下示例将首先下载预训练模型,然后使用简单的模型抽取器从 Keras 应用中获取模型,抽取器将抽取 Keras 模型架构和权重。

$ python -m mmdnn.conversion.examples.keras.extract_model -n inception_v3

Using TensorFlow backend.

Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels.h5

96075776/96112376 [============================>.] - ETA: 0s

.

.

.

Network structure is saved as [imagenet_inception_v3.json].

Network weights are saved as [imagenet_inception_v3.h5].

架构文件 imagenet_inception_v3.json 和权重文件 imagenet_inception_v3.h5 会下载至当前工作目录。

3. 将预训练模型文件转换为中间表征

$ python -m mmdnn.conversion._.convertToIR -f keras -d converted -n imagenet_inception_v3.json -w imagenet_inception_v3.h5

Using TensorFlow backend.

.

.

.

Network file [imagenet_inception_v3.json] is loaded successfully.

IR network structure is saved as [converted.json].

IR network structure is saved as [converted.pb].

IR weights are saved as [converted.npy].

以上的命令会将 imagenet_inception_v3.json 作为神经网络架构的描述文件,imagenet_inception_v3.h5 作为预训练权重。然后计算出中间表征文件 converted.json 用于可视化,计算出 converted.proto 和 converted.npy 以进一步转换为其它框架。

4. 转换 IR 文件为 CNTK 模型

$ python -m mmdnn.conversion._.IRToCode -f cntk -d converted_cntk.py -n converted.pb -w converted.npy

Parse file [converted.pb] with binary format successfully.

Target network code snippet is saved as [converted_cntk.py].

你将得到文件 converted_cntk.py,包括构建 Inception V3 网络的原始 CNTK 代码。

经过这三步,你已经将预训练 Keras Inception_v3 模型转换成 CNTK 网络文件 converted_cntk.py 和权重文件 converted.npy。你可以用这两个文件调整训练或推断。

5. 转存原始 CNTK 模型

$ python -m mmdnn.conversion.examples.cntk.imagenet_test -n converted_cntk -w converted.npy --dump cntk_inception_v3.dnn

.

.

.

CNTK model file is saved as [cntk_inception_v3.dnn], generated by [converted_cntk.py] and [converted.npy].

CNTK 可直接加载文件 cntk_inception_v3.dnn。

文章来源网络,作者:运维,如若转载,请注明出处:https://shuyeidc.com/wp/219466.html<

(0)
运维的头像运维
上一篇2025-04-14 03:13
下一篇 2025-04-14 03:15

相关推荐

  • 个人主题怎么制作?

    制作个人主题是一个将个人风格、兴趣或专业领域转化为视觉化或结构化内容的过程,无论是用于个人博客、作品集、社交媒体账号还是品牌形象,核心都是围绕“个人特色”展开,以下从定位、内容规划、视觉设计、技术实现四个维度,详细拆解制作个人主题的完整流程,明确主题定位:找到个人特色的核心主题定位是所有工作的起点,需要先回答……

    2025-11-20
    0
  • 社群营销管理关键是什么?

    社群营销的核心在于通过建立有温度、有价值、有归属感的社群,实现用户留存、转化和品牌传播,其管理需贯穿“目标定位-内容运营-用户互动-数据驱动-风险控制”全流程,以下从五个维度展开详细说明:明确社群定位与目标社群管理的首要任务是精准定位,需明确社群的核心价值(如行业交流、产品使用指导、兴趣分享等)、目标用户画像……

    2025-11-20
    0
  • 香港公司网站备案需要什么材料?

    香港公司进行网站备案是一个涉及多部门协调、流程相对严谨的过程,尤其需兼顾中国内地与香港两地的监管要求,由于香港公司注册地与中国内地不同,其网站若主要服务内地用户或使用内地服务器,需根据服务器位置、网站内容性质等,选择对应的备案路径(如工信部ICP备案或公安备案),以下从备案主体资格、流程步骤、材料准备、注意事项……

    2025-11-20
    0
  • 如何企业上云推广

    企业上云已成为数字化转型的核心战略,但推广过程中需结合行业特性、企业痛点与市场需求,构建系统性、多维度的推广体系,以下从市场定位、策略设计、执行落地及效果优化四个维度,详细拆解企业上云推广的实践路径,精准定位:明确目标企业与核心价值企业上云并非“一刀切”的方案,需先锁定目标客户群体,提炼差异化价值主张,客户分层……

    2025-11-20
    0
  • PS设计搜索框的实用技巧有哪些?

    在PS中设计一个美观且功能性的搜索框需要结合创意构思、视觉设计和用户体验考量,以下从设计思路、制作步骤、细节优化及交互预览等方面详细说明,帮助打造符合需求的搜索框,设计前的规划明确使用场景:根据网站或APP的整体风格确定搜索框的调性,例如极简风适合细线条和纯色,科技感适合渐变和发光效果,电商类则可能需要突出搜索……

    2025-11-20
    0

发表回复

您的邮箱地址不会被公开。必填项已用 * 标注